References

- Evans, E. H., Newson, A. T., March, L. A., Nowell, I. W. & Wasworth, A. H. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 137– 141.
- Kaftory, M. & Dunitz, J. D. (1975). Acta Cryst. B31, 2917-2918.
- Kaftory, M. & Dunitz, J. D. (1976). Acta Cryst. B32, 1-4.
- Severin, T., Schmidt, S. R. & Adam, M. (1963). Chem. Ber. 96, 3076-3080.
- Sheldrick, G. M. (1993). SHELXTLIPC. Version 5.02. Program Package for Crystal Structure Solution and Refinement. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Siemens (1989). P3. Program for Data Collection. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zefirov, Yu. V. & Zorky, P. M. (1989). Uspekhi Khim. (Russ. Chem. Rev.), 58, 713-716.

gen-bonding ability on the symmetry of the crystals of adamantane derivatives. However, the crystal structures of such derivatives have been reported only for 1-adamantanol (Amoureux *et al.*, 1979) and 1-adamantanecarboxylic acid (Harvey *et al.*, 1986; Bélanger-Gariépy *et al.*, 1990). In the present work, we establish the structure of a new methanol-water solvate of N-(1-adamantyl)acetamide, (I).

Molecules in the asymmetric unit are shown in Fig. 1. The hydrogen-bonding geometry is summarized in Table 1. In addition to four hydrogen bonds in the

Acta Cryst. (1998). C54, 273-274

Methanol–Water Solvate of N-(1-Adamantyl)acetamide

Setsuo Kashino, Shuichi Tateno, Noritaka Hamada and Masao Haisa†

Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan. E-mail: kashinos@cc.okayama-u.ac.jp

(Received 12 June 1997; accepted 14 October 1997)

Abstract

It has been found that N-(1-adamantyl)acetamide forms a methanol-water solvate, $3C_{12}H_{19}NO.CH_4O.H_2O$. The acetylamino groups in the asymmetric unit are linked by hydrogen bonds *via* the methanol or water molecules. The asymmetric units are linked by hydrogen bonds between acetylamino groups to form a ribbon. The ribbons are linked by hydrogen bonds between the water and methanol molecules. The conformations of the three acetylamino groups with respect to the adamantane moieties are essentially the same.

Comment

The molecule of adamantane has high symmetry, Td, and adamantane crystallizes in the highest space group, $Fm\overline{3}m$ (Nordman & Schmitkons, 1965; Amoureux *et al.*, 1980; Amoureux & Bee, 1980). In view of the development of crystal structure systems and the design of organic crystals, it is of interest to study the effects of some simple functional substituents having hydro-

Fig. 1. The molecular structure of the asymmetric unit showing 50% probability displacement ellipsoids. H atoms attached to adamantyl C atoms have been omitted for clarity. Hydrogen bonds are shown by dashed lines.

[†] Emeritus Professor of Okayama University.

asymmetric unit, hydrogen bonds between acetylamino groups link asymmetric units related by a **b** translation, resulting in the formation of a ribbon. Ribbons, related by a centre of symmetry, are linked by hydrogen bonds between the water and methanol molecules. Thus, one side of the ribbon forms a hydrophilic region and the other side forms a hydrophobic region.

In the three independent molecules (A, B and C) of N-(1-adamantyl)acetamide, the conformations around the C1—N1 bonds are similar; for each molecule, two of the three C—C—N—C angles correspond to gauche conformations, and the other corresponds to a trans conformation. Thus, the conformation around the C1—N1 bond is not significantly influenced by the crystallographic environment. It is of note that the O atoms of the amide groups participate in intramolecular C—H···O interactions [C···O 3.043 (6)–3.141 (6), H···O 2.44 (4)– 2.56 Å and C—H···O 119 (3)–124 (3)°]. Such interactions have been noted for 1,3-(2-hydryl-F-adamantyl) bis(trifluoroacetate), based on ¹H NMR and IR spectra (Adcock & Zhang, 1995).

Experimental

Crystals were grown by slow evaporation from a methanolacetone solution $(1:1 \nu/\nu)$ of N-(1-adamantyl)acetamide (Aldrich 13,710-3). A crystal was sealed in a glass capillary to avoid efflorescence during diffraction data measurements.

Crystal data

$3C_{12}H_{19}NO.CH_4O.H_2O$ $M_r = 629.9$ Triclinic $P\overline{1}$ a = 14.622 (2) Å b = 17.901 (3) Å c = 6.908 (1) Å $\alpha = 92.43 (1)^{\circ}$ $\beta = 90.88 (1)^{\circ}$ $\gamma = 92.35 (1)^{\circ}$ $V = 1804.8 (5) Å^3$ Z = 2 $D_x = 1.159 \text{ Mg m}^{-3}$ $D_m = 1.15 \text{ Mg m}^{-3}$ $D_m \text{ measured by flotation in aqueous KI solution}$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 11.0-11.5^{\circ}$ $\mu = 0.076 \text{ mm}^{-1}$ T = 295 K Plate developed in {100} $0.50 \times 0.33 \times 0.32 \text{ mm}$ Colourless
Data collection Rigaku AFC-5R diffractom- eter $\omega/2\theta$ scans Absorption correction: none 6947 measured reflections 6370 independent reflections 3515 reflections with $I > 1.5\sigma(I)$ $R_{int} = 0.030$	$\theta_{\text{max}} = 26.0^{\circ}$ $h = -18 \rightarrow 18$ $k = -23 \rightarrow 23$ $l = 0 \rightarrow 9$ 3 standard reflections every 97 reflections intensity decay: 0.7%

Refinement

 $\Delta \rho_{\rm max}$ = 0.26 e Å⁻³ Refinement on F $\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.072Extinction correction: wR = 0.064S = 1.16 $I_{\rm corr} = I_o(1 + gI_c)$ Extinction coefficient: 3515 reflections $g = 1.02 \times 10^{-6}$ 479 parameters Scattering factors from Inter-H atoms: see below $w = 1/\sigma^2(F)$ national Tables for X-ray Crystallography (Vol. IV) $(\Delta/\sigma)_{\rm max} = 0.004$

Table 1. Hydrogen-bonding geome	etry (A	4, °)
---------------------------------	---------	------	---

D — $\mathbf{H} \cdots \mathbf{A}$	<i>D</i> —Н	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	D—H···A		
O1 <i>W</i> —H2 <i>W</i> ···O1 <i>C</i>	0.96 (5)	1.76 (5)	2.695 (4)	165 (5)		
$O1W$ — $H1W \cdots O1M^{i}$	0.94 (4)	1.90 (5)	2.820 (5)	169 (5)		
O1 <i>M</i> —H1O <i>M</i> ···O1 <i>A</i>	0.91 (4)	1.76 (4)	2.661 (4)	169 (4)		
N1A—H1NA···O1W	0.89 (4)	2.03 (4)	2.906 (4)	170 (4)		
N1 <i>B</i> —H1N <i>B</i> ···O1 <i>M</i>	0.85 (4)	2.17 (4)	3.013 (5)	171 (4)		
$N1C$ — $H1NC \cdots O1B^{i1}$	0.89 (4)	1.99 (4)	2.880 (4)	177 (4)		
Symmetry codes: (i) $1 - x$, $1 - y$, $1 - z$; (ii) $x, y - 1, z$.						

Data collection and cell refinement were carried out with MSC/AFC Data Collection and Refinement Software (Rigaku Corporation, 1990). The structure was solved by direct methods using *MITHRIL* (Gilmore, 1984) and refined by full-matrix least squares using *TEXSAN* (Molecular Structure Corporation, 1985). H atoms were located from a difference Fourier map. The H atoms involved in the hydrogen bonds and C—H···O interactions were refined isotropically. The coordinates of the other H atoms were fixed; their isotropic displacement parameters were assumed to be the same as the equivalent isotropic displacement parameters of the C atoms to which they are attached. The displacement ellipsoid plots were drawn with the aid of *ORTEPII* (Johnson, 1976). The calculations were performed on a VAX 3100 computer using *TEXSAN* at the X-ray Laboratory of Okayama University, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1075). Services for accessing these data are described at the back of the journal.

References

- Adcock, J. L. & Zhang, H. (1995). J. Org. Chem. 60, 1999-2002.
- Amoureux, J. P. & Bee, M. (1980). Acta Cryst. B36, 2636-2642.
- Amoureux, J. P., Bee, M. & Damien, J. C. (1980). Acta Cryst. B36, 2633–2636.
- Amoureux, J. P., Bee, M., Gors, C., Warin, V. & Baert, F. (1979). Cryst. Struct. Commun. 8, 449–454.
- Bélanger-Gariépy, F., Brisse, F., Harvey, P. D., Gilson, D. F. R. & Butler, I. S. (1990). Can. J. Chem. 68, 1163-1169.
- Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- Harvey, P. D., Gilson, D. F. R. & Butler, I. S. (1986). J. Phys. Chem. 90, 136-139.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, Research Forest Drive, The Woodlands, TX 77381, USA.
- Nordman, C. E. & Schmitkons, D. L. (1965). Acta Cryst. 18, 764-767. Rigaku Corporation (1990). RASAII. X-ray Data Collection Package.
 - Rigaku Corporation, Tokyo, Japan.